寡妇张开腿让我桶爽动漫图片,我来也电影,被老师摸着jj勃起有14厘米,护士爆乳洗澡自慰流出白色液体

email info@szyujiaxin.com
Shenzhen Yujiaxin Tech Co., Ltd. SHENZHEN YUJIAXIN TECH CO.,LTD.
Presse
Produktanzeige
Kontaktieren Sie uns
  • Email: info@szyujiaxin.com
  • Skype: +8615986816992
  • Whatsapp: +8615986816992
  • Wechat: yujiaxin-666
  • QQ: 2269845694
Ihr aktueller Standort > Startseite > detailliert

Neue Methode erm?glicht Miniaturrobotern und chirurgischen Instrumenten eine pr?zise Lokalisierung im K?rper



Datum:[2024/5/12]
In der Medizin der Zukunft navigieren winzige Roboter selbstst?ndig durch Gewebe und medizinische Instrumente zeigen ihre Position im K?rper w?hrend der Operation an. Beide erfordern, dass ?rzte die Ger?te pr?zise und in Echtzeit lokalisieren und steuern k?nnen.

Bisher gab es dafür keine geeignete Methode. Wissenschaftler des Deutschen Krebsforschungszentrums (DKFZ) haben nun eine Signalisierungsmethode auf Basis eines oszillierenden Magneten beschrieben, die solche medizinischen Anwendungen signifikant verbessern kann.

Die Studie wird in der Fachzeitschrift npj Robotics ver?ffentlicht.

Was bis vor kurzem nach Science Fiction klang, ist inzwischen weit fortgeschritten: Nanoroboter, die sich selbstst?ndig durch den K?rper bewegen, sollen Medikamente transportieren, Gewebe messen oder chirurgische Eingriffe durchführen. Magnetisch angetriebene Nanoroboter, die durch den Muskel, durch den Glask?rper des Auges oder durch das Blutgef??system navigieren, wurden bereits entwickelt.

Es fehlt jedoch an ausgefeilten Systemen, um die Aktivit?ten der Roboter tief im K?rper in Echtzeit zu verfolgen und zu steuern. Traditionelle bildgebende Verfahren sind nur bedingt geeignet. Die Magnetresonanztomographie (MRT) ist zeitlich begrenzt, die Computertomographie (CT) ist mit Strahlenexposition verbunden und die starke Streuung von Schallwellen begrenzt die lokale Aufl?sung von Ultraschall.
Integration of SMOL for biomedical applications. Credit: npj Robotics (2024). DOI: 10.1038/s44182-024-00008-x
Integration von SMOL für biomedizinische Anwendungen. Quelle: npj Robotics (2024). DOI: 10.1038/s44182-024-00008-x
Ein Team um Tian Qiu vom DKFZ Dresden hat nun eine neue Methode zur L?sung dieses Problems erfunden. Das winzige Ger?t, das sie entwickelt haben, basiert auf einem magnetischen Oszillator (also einem mechanisch oszillierenden Magneten, der sich in einem millimetergro?en Geh?use befindet). Ein externes Magnetfeld kann den Magneten anregen, mechanisch zu vibrieren.

Wenn die Schwingung wieder nachl?sst, kann dieses Signal mit magnetischen Sensoren aufgezeichnet werden. Das Grundprinzip ist vergleichbar mit der Kernspinresonanz in der MRT: Die Forscher bezeichnen die Methode als "Small-Scale Magneto-Oszillatory Localization" (SMOL).

Mit SMOL lassen sich Position und Ausrichtung des kleinen Ger?tes in gro?er Entfernung (über 10 cm), sehr pr?zise (weniger als 1 mm) und in Echtzeit bestimmen. Im Gegensatz zu Tracking-Methoden auf Basis statischer Magnete kann SMOL Bewegungen in allen sechs Freiheitsgraden und mit deutlich h?herer Signalqualit?t erfassen.

Da das Ger?t auf schwachen Magnetfeldern basiert, ist es harmlos für den K?rper, drahtlos und kompatibel mit vielen herk?mmlichen Ger?ten und bildgebenden Techniken.

überblick über die SMOL-Methode. Quelle: npj Robotics (2024). DOI: 10.1038/s44182-024-00008-x
"Es gibt viele Anwendungsm?glichkeiten für die SMOL-Methode", sagt Felix Fischer, Erstautor der aktuellen Publikation. "Wir haben das System bereits in Miniaturroboter und Instrumente für die minimalinvasive Chirurgie integriert.

"Denkbar w?re eine Kombination mit Kapselendoskopen oder die Markierung von Tumorgewebe für eine sehr pr?zise Strahlentherapie. Unsere Methode k?nnte auch einen entscheidenden Vorteil für vollautomatisierte chirurgische Robotik oder Augmented Reality Anwendungen bieten."

"SMOL ben?tigt nur vergleichsweise einfache technische Ausstattung. Aufgrund seiner Abmessungen im Millimeterbereich l?sst sich der Oszillator in viele bestehende Instrumente integrieren und es besteht noch Potenzial für weitere Miniaturisierungen. Dank seiner pr?zisen r?umlichen und zeitlichen Aufl?sung hat unsere Technik das Potenzial, viele medizinische Verfahren der Zukunft signifikant voranzutreiben", kommentiert Qiu, Senior Author der aktuellen Publikation.



主站蜘蛛池模板: 孝感市| 平塘县| 来凤县| 望都县| 荥经县| 乐业县| 安徽省| 铅山县| 四会市| 东乡县| 前郭尔| 海南省| 沁源县| 广水市| 灵川县| 都安| 横山县| 三门县| 宁安市| 垦利县| 招远市| 霸州市| 贵州省| 遵义市| 新邵县| 株洲市| 周宁县| 鹰潭市| 同仁县| 平乐县| 宁城县| 乳源| 南漳县| 林甸县| 北辰区| 昭通市| 林芝县| 西昌市| 三门峡市| 靖安县| 山阳县|